2017-DSE ICT PAPER 2D

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2017

INFORMATION AND COMMUNICATION TECHNOLOGY PAPER 2D

Software Development

Question-Answer Book

11.15 am – 12.45 pm (1 hour 30 minutes) This paper must be answered in English

INSTRUCTIONS

- (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3 and 5.
- (2) Tick the appropriate box for the programming language used. No marks will be awarded if you tick either more than one box or no boxes.
- (3) ANSWER ALL QUESTIONS. Write your answers in the spaces provided in this Question-Answer book. Do not write in the margins. Answers written in the margins will not be marked.
- (4) Supplementary answer sheets will be supplied on request. Write your candidate number, mark the question number box and stick a barcode label on each sheet, and fasten them with string INSIDE this book.
- (5) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

Please stick th	ie l	baı	со	de	la	be	l he	ere	.
Candidate Number									
	F	as	cal		•				
Programming Language Used	С								
(Please tick one)	٧.	/isu	al E	3as	ic				
	J	ava	1						

1. Mary is going to develop a project management system, PMS. Users can use PMS to draw Gantt Charts.

The following table shows the durations and dependencies of the tasks in a project prjX.

Task	The task(s) it depends on	Number of days needed
1	2	3
2	-	3
3	2	4
4	1, 3	3
5	1, 2	2

(a) (i) Complete the Gantt Chart for prjX below.

		Day										
	1	2	3	4	5	6	7	8	9	10	11	12
Task 1										ļ		
Task 2												
Task 3												
Task 4		ļ										
Task 5		ļ	ļ									

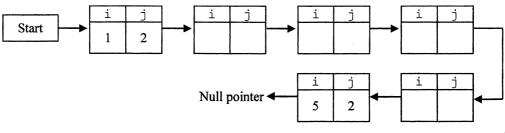
- (ii) What is the critical path of prjX?
- (iii) What is the minimum number of days needed to complete prjX?

(5 marks)

Answers written in the margins will not be marked.

Mary considers using a two-dimensional array M to store the dependencies of tasks in prjX.

If task i depends on task j, M[i, j] = T; otherwise M[i, j] = F.


(b) (i) Complete M below according to the dependencies of the tasks in prjX.

i j	1	2	3	4	5
1	F	Т	F'	F	F
2	F	F	F	F	F
3					
4					
5					

M:

(ii) Write pseu	(ii) Write pseudocode to print out all dependencies of tasks in prjX.						
					(5 marks)		

(c) Mary considers using the following linked list to store the dependencies of tasks in prjX. Each node (i,j) represents a dependency in which task i depends on task j. Complete the linked list below.

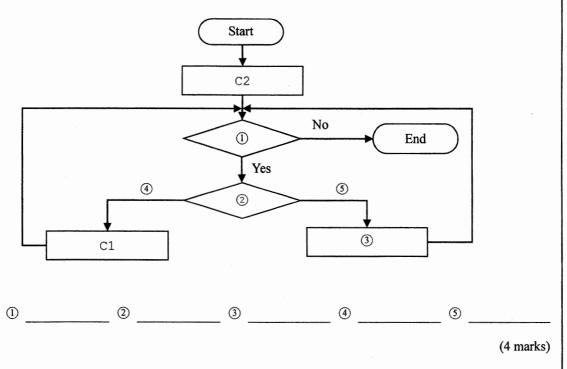
(3 marks)

Answers written in the margins will not be marked.

- (d) When designing PMS, Mary considers various types of human-machine interfaces.
 - (i) Give two advantages of using a graphical user interface over a command line interface.

(ii) Give two basic components of a typical graphical user interface.

(4 marks)


2. Subprogram F processes an integer array A of size n. The pseudocode for F is shown below:

```
Line 1:
          Subprogram F
Line 2:
          pos ← 1
          while pos \le n do
Line 3:
Line 4:
              if (pos = 1) or (A[pos-1] \le A[pos])
Line 5:
                 pos ← pos + 1
Line 6:
              else
Line 7:
                             ← A[pos-1]
                  tmp
Line 8:
                 A[pos-1] \leftarrow A[pos]
Line 9:
                 A[pos]
                             ← tmp
Line 10:
                             ← pos - 1
                 pos
```

(a) Some commands are represented by C1 to C5, as follows:

C1	pos ← pos + 1
C2	pos ← 1
С3	$tmp \leftarrow A[pos-1]$ $A[pos-1] \leftarrow A[pos]$ $A[pos] \leftarrow tmp$ $pos \leftarrow pos - 1$
C4	pos ≤ n?
C5	(pos = 1) or (A[pos-1] ≤ A[pos])?

Complete the following flowchart diagram for subprogram F. Write your answers in the spaces provided.

Please stick the barcode label here.

(b) Assume that n = 6 and F is executed with the following initial content of A:

	i	1	2	3	4	5	6
the i-th entry of	A	8	3	5	1	4	9

(i) What is the content of A when the value of pos becomes 3 for the first time?

	i	1	2	3	4	5	6
the i-th entry of	A						

(ii) What is the final content of A?

	i	1	2	3	4	5	6
the i-th entry of	A					,	

(iii) What is the purpose of subprogram F?

(4 marks)

Answers written in the margins will not be marked.

(c) Assume that n = 6 and F will be executed with the following initial content of A:

	i	1	2	3	4	5	6
the i-th entry of	A	1.	4	2	4	7	9

How many times will Line 4 of F be executed?

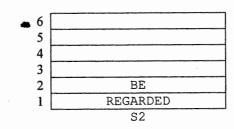
(2 marks)

- (d) (i) In what situation will the number of times Line 4 of F is executed be minimal?
 - (ii) In what situation will the number of times Line 4 of F is executed be maximal?

(2 marks)

(e)	A compiled language reasons to support to	ge instead of an intende choice.	rpreted language is	chosen to write subprogr	am F. Give tw
					(2 mark
				_,	

3.	John is going to develop a text editor. Only words will be typed into the editor. He uses two stacks S1 and
	S2 to set up an UNDO button and a REDO button. S1 stores the current typed words while S2 is
	temporary storage. When the UNDO button is clicked, the latest typed word will be removed from S1.
	When the REDO button is clicked the latest removed word will be restored to \$1.

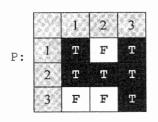

For example, after the sentence 'MATHEMATICAL REASONING MAY BE REGARDED' is typed, the contents of S1 and S2 are:

6	
5	REGARDED
4	BE ·
3	MAY
2	REASONING
1	MATHEMATICAL
	S1

6	
5	
4	
3	
2	
1	

When the UNDO button is clicked twice, the contents of S1 and S2 are:

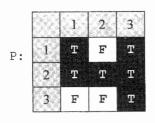
6	
5	
4	
3	MAY
2	REASONING
1	MATHEMATICAL
٠.	S1


- (a) Describe the stack operations involving S1 and S2 for the following cases.
 - (i) The UNDO button is clicked.
 - (ii) The REDO button is clicked.
 - (iii) S1 is empty and the UNDO button is clicked.

(3 marks)

(1 mark)

	(4 marks
(d)	John considers some programming languages to develop the text editor.
	(i) Give an example of an object-oriented language and an example of a non object-oriented language, other than Pascal, C, Java and Visual Basic.
	Object-oriented language:
	Non object-oriented language:
	Non object-oriented language:
	Non object-oriented language: (ii) Give three criteria for selecting a programming language.
	Non object-oriented language:
	Non object-oriented language: (ii) Give three criteria for selecting a programming language.
	Non object-oriented language: (ii) Give three criteria for selecting a programming language.
	Non object-oriented language: (ii) Give three criteria for selecting a programming language.
	Non object-oriented language: (ii) Give three criteria for selecting a programming language.
	Non object-oriented language: (ii) Give three criteria for selecting a programming language.


4. Two-dimensional arrays P and B1 are used to represent an image with 3×3 pixels and an image with 5×10 pixels respectively. In the arrays, T and F represent black and white pixels respectively, as shown in the following example:

5 7 8 9 10 2 4 6 3 Т F F F F F 1 T F F F T 2 Т F T T F F T F F B1: 3 F F Т T Т F T F F F 4 F F F F Т Т T F F F 5 F F T F T F F F

Peter plans to write a pattern matching program to count the number of occurrences of P in B1. In the example above, there are two occurrences of P in B1.

(a) Observe the following case:

9 2 3 4 5 6 7 8 10 Т F F F F T F T F T T T T 2 Т T Т F T F F 3 T T T T T F T F F T F T F F F F T Т 4 F F Т 5 F F F F F T F F

How many occurrences are there of P in B1?

B1:

(1 mark)

Answers written in the margins will not be marked

Peter writes a subprogram Compare (i, j) where i and j are integer input parameters. Compare checks if P matches the image assembled by B1[i, j] to B1[i+2, j+2]. It returns 'TRUE' if there is a match; otherwise, it returns 'FALSE'.

(b) Complete the pseudocode for Compare below.

Peter considers another method, calculating a K value for every 9 (3×3) pixels. 9 values, 2^0 , 2^1 , ..., 2^8 (i.e. 1, 2, 4, 8, 16, 32, 64, 128 and 256) are used to represent 9 black pixels, as shown below. K is the sum of the values that represent the black pixels in image P.

1	2	4		
8	16	32		
64	128	256		

P:

	1	2	3
1	T	F.	T
2	Т	Т	T
3	F	F	Т

Hence, for image P in the example above, K = 1 + 4 + 8 + 16 + 32 + 256 = 317.

(c) (i) Find the value of K for the following image.

		- 1	2	3
P:	1	T	Т	T
	2	F	T	F
	3	F	F	F

(ii) Peter writes a subprogram FindK to find the value of K for image P that is represented by temp[1, 1] to temp[3, 3]. Complete the pseudocode for FindK below.

(5 marks)

Answers written in the margins will not be marked

B1:

For image B1, an integer array B2 is used to store the corresponding K values. The value in B2[i, j] is the K value for the 9 pixels from B1[i, j] to B1[i+2, j+2]. In the following example, the values in B2[1, 1] and B2[2, 1] are given.

	1	2	3	4	5	6	7	8	9	10
1	Т	F	T	F	F	F	F	T	F	Т
2	T	T	T	F	T	F	F	T	Т	T
3	F	F	T	T	T	F	Т	F	F	T
4	F	F	F	F	T	т	T	F	F	F
5	F	F	F	F	F	F	T	F	T	F

- (d) (i) What is the value in B2[3, 1]?_____
 - (ii) Describe how to use searching and K values to find the number of occurrences of $\ P$ in $\ B1$.

(3 marks)

- (e) (i) Suppose that a sequential search is used and there is no occurrence of P in B1 in (d)(ii). How many comparisons involving the values in B2 will have been done during the searching process?
 - (ii) Someone suggests that binary search could be applied in order to improve the efficiency of the pattern matching. Do you agree? Explain briefly.

(3 marks)

END OF PAPER