

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2009

MATHEMATICS PAPER 2

11.15 am - 12.45 pm (11/2 hours)

Subject Code 180

- 1. Read carefully the instructions on the Answer Sheet. Stick a barcode label and insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- ANSWER ALL QUESTIONS. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

Not to be taken away before the end of the examination session

FORMULAS FOR REFERENCE

 $= 4\pi r^2$ **SPHERE** Surface area $= \frac{4}{3}\pi r^3$ Volume Area of curved surface = $2\pi rh$ **CYLINDER** $= \pi r^2 h$ Volume Area of curved surface = πrl CONE $= \frac{1}{3}\pi r^2 h$ Volume = base area × height Volume **PRISM**

Volume

PYRAMID

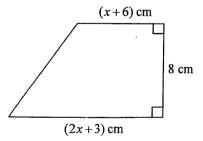
 $= \frac{1}{3} \times \text{base area} \times \text{height}$

There are 36 questions in Section A and 18 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

$$1. \qquad 2^n \cdot 3^n =$$

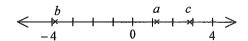
- A. 5^n .
- B. 6^n .
- C. 8^n .
- D. 9^n .


2. If
$$P = \frac{VT}{R} - 2$$
, then $T =$

- A. $\frac{P}{V} + 2R$.
- B. $\frac{RP+2}{V}$.
- C. $R\left(\frac{P}{V}+2\right)$.
- D. $\frac{R(P+2)}{V}$.

3.
$$\frac{1}{a-2} - \frac{2}{1-a} =$$

- $A. \qquad \frac{3}{(a-1)(a-2)} \ .$
- B. $\frac{a-3}{(a-1)(a-2)}$.
- C. $\frac{3a-1}{(a-1)(a-2)}$.
- D. $\frac{3a-5}{(a-1)(a-2)}$.


- 4. $(3x-5)(2x^2+5x-3) =$
 - A. $6x^3 + 5x^2 34x + 15$.
 - B. $6x^3 5x^2 + 34x + 15$.
 - C. $6x^3 + 25x^2 + 16x + 15$.
 - D. $6x^3 25x^2 16x + 15$.
- 5. If a and b are constants such that $a(x^2 x) + b(x^2 + x) = 2x^2 + 4x$, then a = a
 - A. -1.
 - B. 1.
 - C. 2.
 - D. 3.
- 6. Let $f(x) = x^2 9x + c$, where c is a constant. If f(-1) = 8, then c =
 - A. -2.
 - B. 0.
 - C. 16.
 - D. 18.
- 7. In the figure, the area of the trapezium is 96 cm^2 . Find x.
 - A. 1
 - B. 5
 - C. 7
 - D. 11

- 8. If the quadratic equation $x^2 + bx + 4b = 0$ has equal roots, then b =
 - A. 4.
 - B. 16.
 - C. 0 or 4.
 - D. 0 or 16.
- 9. If x is a positive integer satisfying the inequality $x-5 \le 1-x$, then the least value of x is
 - A. 0.
 - B. 1.
 - C. 2.
 - D. 3.
- 10. If a dictionary is sold at its marked price, then the percentage profit is 30%. If the dictionary is sold at a 20% discount on its marked price, then the profit is \$5. Find the cost of the dictionary.
 - A. \$104
 - B. \$105
 - C. \$125
 - D. \$130
- 11. A sum of \$30 000 is deposited at an interest rate of 5% per annum for 2 years, compounded yearly. Find the interest correct to the nearest dollar.
 - A. \$3000
 - B. \$3 075
 - C. \$3114
 - D. \$3122

12. In the following sequence, the 1st term, the 2nd term and the 3rd term are 1, 2 and 3 respectively. For any positive integer n, the (n+3)th term is the sum of the (n+2)th term, the (n+1)th term and the nth term. Find the 9th term of the sequence.

- A. 51
- B. 68
- C. 125
- D. 230
- 13. The scale of a map is 1:5000. If the area of a garden on the map is 4 cm^2 , then the actual area of the garden is
 - A. 100 m^2 .
 - B. $200 \,\mathrm{m}^2$.
 - C. $10000 \,\mathrm{m}^2$.
 - D. $20000 \,\mathrm{m}^2$.
- 14. It is given that y is partly constant and partly varies inversely as x. When x=1, y=-1 and when x=2, y=1. Find the value of x when y=2.
 - A. -4
 - B. 1
 - C. 2.5
 - D. 4
- 15. The figure shows the positions of three real numbers a, b and c on the number line. Which of the following is the best estimate of c(a-b)?

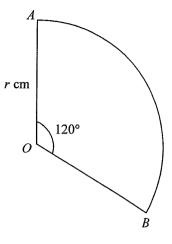
- A. -15
- B. -9
- C. 9
- D. 15

16. If the angle of elevation of P from Q is 40° , then the angle of depression of Q from P is

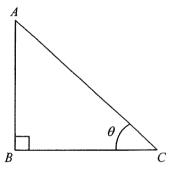
- A. 40°.
- B. 50°.
- C. 130°.
- D. 140°.

17. The base of a solid right pyramid is a square. If the perimeter of the base is 48 cm and the length of each slant edge of the pyramid is 10 cm, then the total surface area of the pyramid is

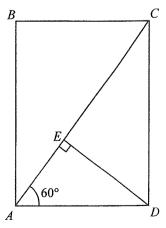
- A. 192 cm^2 .
- B. 336 cm^2 .
- C. 384 cm^2 .
- D. $96\sqrt{7} \text{ cm}^2$.

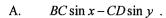

18. The base radius and the height of a right circular cylinder are 3 cm and 12 cm respectively while the base radius of a right circular cone is 6 cm. If the volume of the circular cylinder and the volume of the circular cone are the same, then the height of the circular cone is

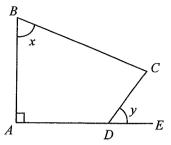
- A. 3 cm.
- B. 9 cm.
- C. 18 cm.
- D. 27 cm.


19. It is given that A, B and C are solid spheres. If the volume of B: the volume of C = 1:8 and the surface area of A: the surface area of B = 9:4, then the radius of A: the radius of C = 1:8

- A. 3:4.
- B. 3:16.
- C. 9:8.
- D. 9:32.


- 20. In the figure, OAB is a sector of radius r cm . If $\angle AOB = 120^{\circ}$ and the area of the sector is 12π cm², then r =
 - A. 3.
 - B. 4.
 - C. · 6.
 - D. 18.

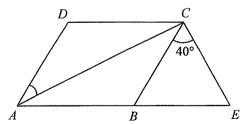

- 21. In the figure, 2AB = 3BC. Find θ correct to the nearest degree.
 - A. 34°
 - B. 42°
 - C. 48°
 - D. 56°


- 22. In the figure, ABCD is a rectangle. It is given that E is the foot of the perpendicular from D to AC. If the area of $\triangle ADE$ is 1 cm^2 , then the area of $\triangle ABC$ is
 - $A. \qquad 3\ cm^2\ .$
 - $B. \qquad 4\ cm^2\ .$
 - C. 5 cm^2 .
 - D. $2\sqrt{3} \text{ cm}^2$.

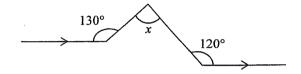
23. In the figure, ADE is a straight line. If $\angle ABC = x$ and $\angle CDE = y$, then AD = x

- B. $BC \sin x CD \cos y$.
- C. $BC \cos x CD \sin y$.
- D. $BC \cos x CD \cos y$.

24. If A and B are acute angles such that $A + B = 90^{\circ}$, then $\cos^2 A + \sin^2 B =$

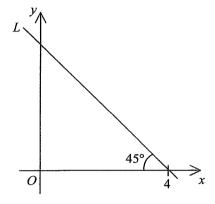

- B. $2\sin^2 A$.
- C. $2\cos^2 A$.
- D. $2\cos^2 B$.
- 25. In $\triangle ABC$, AB:BC:AC=3:4:5. Find $\tan A:\cos C$.

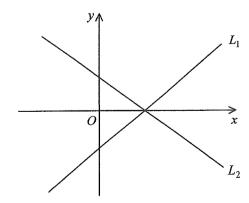
- B. 4:3
- C. 4:5
- D. 5:3
- 26. In the figure, ABCD is a rhombus and ABE is a straight line. If $\angle BCE = 40^{\circ}$ and BC = CE, then $\angle CAD =$


9

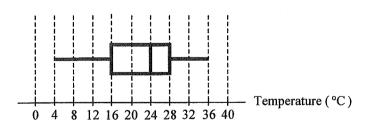
- B. 40°.
- C. 45°.
- D. 50°.

- 27. If each interior angle of a regular *n*-sided polygon is 144° , then n =
 - A. 10.
 - B. 12.
 - C. 14.
 - D. 16.
- 28. In the figure, x =
 - A. 50°.
 - B. 60°.
 - C. 70°.
 - D. 80°.

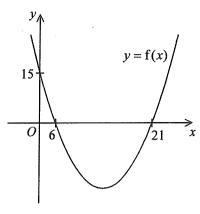

- 29. In the figure, the regular hexagon is divided into six equilateral triangles and two of them are shaded. The number of folds of rotational symmetry of the hexagon is
 - A. 2.
 - B. 3.
 - C. 4.
 - D. 6.


- 30. The coordinates of the point A are (-3,3). If A is reflected with respect to the straight line x=1 to the point B, then the distance between A and B is
 - A. 4.
 - B. 5.
 - C. 6.
 - D. 8.

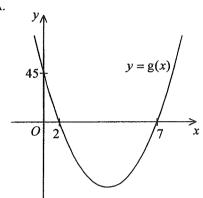
- 31. The coordinates of the points A and B are (3,9) and (7,1) respectively. If P is a point lying on the straight line y = x+1 such that AP = PB, then the coordinates of P are
 - A. (3, 2).
 - B. (3,4).
 - C. (5,5).
 - D. (5,6).


- 32. In the figure, the equation of the straight line L is
 - A. x+y=4.
 - B. x y = 4.
 - C. x + y = -4.
 - D. x y = -4.

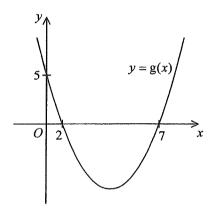
- 33. In the figure, the straight line $L_1: y = ax + b$ and the straight line $L_2: y = cx + d$ intersect at a point on the positive x-axis. Which of the following must be true?
 - A. ab > 0
 - B. cd > 0
 - C. ac = bd
 - D. ad = bc


- 34. Peter has one \$1 coin, one \$2 coin and one \$5 coin in his pocket. If Peter takes out two coins randomly from his pocket, then the probability that he will get enough money to buy a pen of price \$3.5 is
 - A. $\frac{1}{2}$
 - B. $\frac{1}{3}$.
 - C. $\frac{2}{3}$
 - D. $\frac{1}{6}$.
- 35. The mean height of 54 boys and 36 girls is 162 cm. If the mean height of the girls is 153 cm, then the mean height of the boys is
 - A. 147 cm.
 - B. 157.5 cm.
 - C. 168 cm.
 - D. 175.5 cm.
- 36. The box-and-whisker diagram below shows the distribution of temperatures (in °C) of water in an experiment under various settings. Which of the following are true?

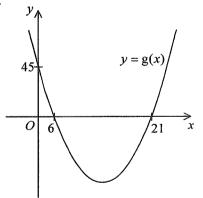
- I. The range is 40 °C.
- II. The median is 24 °C.
- III. The interquartile range is 12°C.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III


Section B

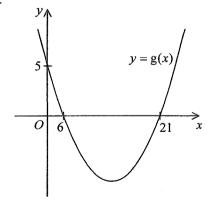
37.



The figure above shows the graph of y = f(x). If f(x) = 3g(x), which of the following may represent the graph of y = g(x)?

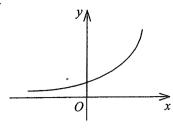

A.

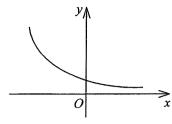
B.



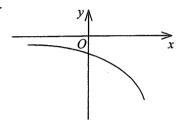
C.

D.


13

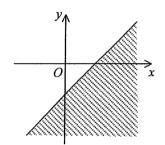

- 38. Which of the following is the best estimate of 1234^{3235} ?
 - A. 10⁴⁰⁰⁰
 - B. 10⁵⁰⁰⁰
 - C. 10^{10 000}
 - D. 10²⁰⁰⁰⁰

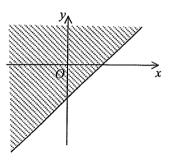
39. Which of the following may represent the graph of $y = -3^{-x}$?


A.

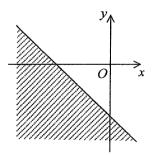

B.

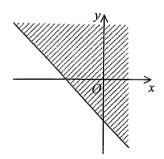
C.


D.

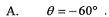

- 40. Convert the decimal number $16^{12} + 14$ to a hexadecimal number.
 - A. 1000000000D₁₆
 - B. 1000000000E₁₆
 - C. 10000000000D₁₆
 - D. 10000000000E₁₆
- 41. When $x^{2009} + x^{2008} + x^{2007} + \cdots + x$ is divided by x+1, the remainder is
 - A. -1.
 - B. 0.
 - C. 1.
 - D. 2009.
- 42. If the sum of the first n terms of a sequence is $n^2 + 2n$, then the 5th term of the sequence is
 - A. 9.
 - B. 11.
 - C. 13.
 - D. 35.

- 43. Let a_n be the *n*th term of a geometric sequence. If $a_7 = 32$ and $a_9 = 8$, which of the following must be true?
 - I. $a_1 > 0$
 - II. $a_1 a_2 > 0$
 - III. $a_2 + a_3 + a_4 + \dots + a_{100} > 0$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 44. Which of the following shaded regions may represent the solution of $y \le x 9$?


A.

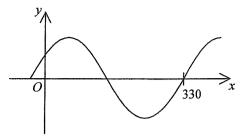

B.

C.



D.

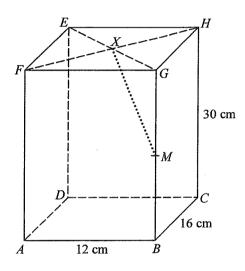
- 45. For $0^{\circ} \le x \le 360^{\circ}$, how many roots does the equation $\cos^2 x \sin^2 x = 1$ have?
 - A. 2
 - B. ...
 - C. 4
 - D. 5


46. Let $-90^{\circ} < \theta < 90^{\circ}$. If the figure shows the graph of $y = 7\sin(x^{\circ} + \theta)$, then

B.
$$\theta = -30^{\circ}$$
.

C.
$$\theta = 30^{\circ}$$
.

D.
$$\theta = 60^{\circ}$$
.

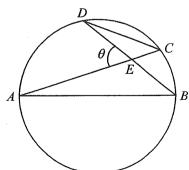

47. In the figure, ABCDEFGH is a rectangular block. EG and FH intersect at X. M is the mid-point of BG. If the angle between MX and the plane BCHG is θ , then $\tan \theta =$

A.
$$\frac{2}{3}$$
.

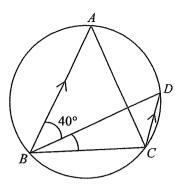
B.
$$\frac{6}{17}$$
.

C.
$$\frac{2}{\sqrt{29}}$$
.

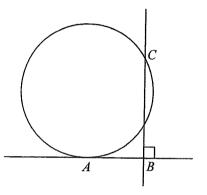
D.
$$\frac{8}{\sqrt{261}}$$

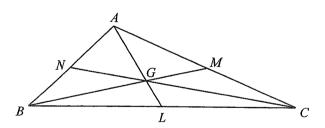

48. In the figure, AB is a diameter of the circle ABCD. It is given that AC and BD intersect at E. If $\angle AED = \theta$, then $\frac{CD}{AB} = \frac{CD}{AB}$

A.
$$\sin \theta$$
.


B.
$$\cos \theta$$
.

C.
$$\tan \theta$$
.

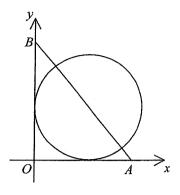

D.
$$\frac{1}{\tan \theta}$$


- 49. In the figure, ABCD is a circle. If AB = AC, AB//DC and $\angle ABD = 40^{\circ}$, then $\angle CBD =$
 - A. 10°.
 - B. 20°.
 - C. 30°.
 - D. 40°.

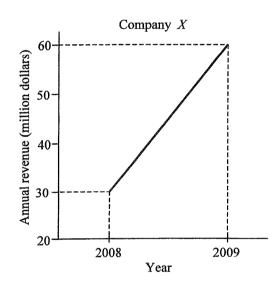
- 50. In the figure, AB is the tangent to the circle at A. If AB = 20 and BC = 50, find the radius of the circle.
 - A. 20
 - B. 25
 - C. 29
 - D. 30

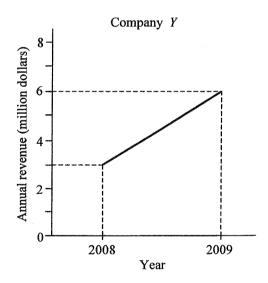
- 51. In the figure, G is the centroid of $\triangle ABC$. AG, BG and CG are produced to meet BC, AC and AB at L, M and N respectively. If BL = 13 cm, BN = 5 cm and CM = 12 cm, find the area of $\triangle ABC$.
 - A. 60 cm²
 - B. 120 cm^2
 - C. 180 cm²
 - D. 240 cm²

- 52. The coordinates of two vertices of a triangle are (-4, -8) and (6,2). If the coordinates of the circumcentre of the triangle are (k, -4), then k =
 - A. -1.
 - B. 0.
 - C. 1.
 - D. 2.


53. In the figure, the circle touches the positive x-axis and the positive y-axis. The coordinates of the points A and B are (21,0) and (0,28) respectively. If AB passes through the centre of the circle, find the equation of the circle.

A.
$$x^2 + y^2 - 12x - 12y + 36 = 0$$


B.
$$x^2 + y^2 - 21x - 28y + 196 = 0$$


C.
$$x^2 + y^2 - 24x - 24y + 144 = 0$$

D.
$$x^2 + v^2 - 42x - 56v + 441 = 0$$

54. The broken line graphs below show the annual revenue (in million dollars) of Company X and Company Y in 2008 and 2009.

Which of the following statements about the percentage increases of the annual revenue of the two companies from 2008 to 2009 is true?

- A. The percentage increases of the annual revenue of company X and company Y are the same.
- B. The percentage increase of the annual revenue of company X is twice that of company Y.
- C. The percentage increase of the annual revenue of company X is five times that of company Y.
- D. The percentage increase of the annual revenue of company X is ten times that of company Y.

END OF PAPER

卷二 Paper 2

題號	答案	題號	答案
Question No.	Key	Question No.	Key
1.	B (95)	31.	B (43)
2.	D (81)	32.	A (60)
3.	D (71)	33.	D (38)
4.	A (89)	34.	C (74)
5.	A (52)	35.	C (81)
6.	A (82)	36.	C (86)
7.	B (92)	37.	D (29)
8.	D (61)	38.	C (48)
9.	B (33)	39.	D (45)
10.	C (72)	40.	D (48)
11.	B (84)	41.	A (45)
12.	C (52)	42.	B (44)
13.	C (51)	43.	A (40)
14.	D (62)	44.	A (47)
15.	D (82)	45.	B (39)
16.	A (45)	46.	C (58)
17.	B (60)	47.	B (30)
18.	B (74)	48.	B (33)
19.	A (53)	49.	C (63)
20.	C (84)	50.	C (32)
21.	D (49)	51.	B (57)
22.	B (28)	52.	D (35)
23.	B (49)	53.	C (38)
24.	C (44)	54.	A (62)
25.	D (48)		` ,
26.	A (83)		
20. 27.	A (75)		
28.	C (79)		
29.	A (65)		
30.	D (53)		
5 4 .	- \ /		

註: 括號內數字爲答對百分率。 Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.