1. Binomial Expansion

Learning Unit	Learning Objective	
Foundation Knowledge A	rea	
1. Binomial expansion	1.1 recognise the expansion of $(a + b)^n$, where n is a positive integer	

Section A

- 1. (a) Expand e^{-18x} in ascending powers of x as far as the term in x^2 .
 - (b) Let *n* be a positive integer. If the coefficient of x^2 in the expansion of $e^{-18x}(1+4x)^n$ is -38. Find *n*.

(6 marks) (2019 DSE-MATH-M1 Q6)

- 2. Let k be a constant.
 - (a) Expand $e^{kx} + e^{2x}$ in ascending powers of x as far as the term in x^2 .
 - (b) If the coefficient of x and the coefficient of x^2 in the expansion of $(1-3x)^8(e^{kx}+e^{2x}-1)$ are equal, find k.

(6 marks) (2018 DSE-MATH-M1 Q6)

- 3. (a) Expand $(1 + e^{3x})^2$ in ascending powers of x as far as the term in x^2 .
 - (b) Find the coefficient of x^2 in the expansion of $(5-x)^4(1+e^{3x})^2$.

(6 marks) (2017 DSE-MATH-M1 O5)

- Let k be a constant.
 - (a) Expand e^{kx} in ascending powers of x as far as the term in x^2 .
 - (b) If the coefficient of x in the expansion of $(1+2x)^7 e^{kx}$ is 8, find the coefficient of x^2 . (5 marks) (2016 DSE-MATH-M1 Q5)
- 5. (a) Expand e^{-4x} in ascending powers of x as far as the term in x^2 .

(b) Find the coefficient of x^2 in the expansion of $\frac{(2+x)^5}{x^{4x}}$.

(5 marks) (2015 DSE-MATH-M1 O5)

1. Binomial Expansion

6. The slope of the tangent to a curve S at any point (x, y) on S is given by $\frac{dy}{dx} = \left(2x - \frac{1}{x}\right)^3$,

where x > 0.

DSE Mathematics Module 1

A point P(1,5) lies on S.

- (a) Find the equation of the tangent to S at P.
- (b) (i) Expand $\left(2x \frac{1}{x}\right)^3$.
 - (ii) Find the equation of S for x > 0.

(7 marks) (2014 DSE-MATH-M1 Q3)

- 7. (a) Expand $\left(u + \frac{1}{u}\right)^4$ in descending powers of u.
 - (b) Express $(e^{ax} + e^{-ax})^4$ in ascending powers of x up to the term in x^2 .
 - (c) Suppose the coefficient of x^2 in the result of (b) is 2. Find all possible values of a. (5 marks) (2013 DSE-MATH-M1 Q1)
- 8. Let n be a positive integer.
 - (a) Expand $(1+3x)^n$ in ascending powers of x up to the term x^2 .
 - (b) It is given that the coefficient of x^2 in the expansion of $e^{-2x}(1+3x)^n$ is 62. Find the value of n.

(4 marks) (2012 DSE-MATH-M1 O1)

- 9. (a) Expand $(2x+1)^3$.
 - (b) Expand e^{-ax} in ascending powers of x as far as the term in x^2 , where a is a constant.
 - (c) If the coefficient of x^2 in the expansion of $\frac{(2x+1)^3}{e^{ax}}$ is -4, find the value(s) of a.

(5 marks) (PP DSE-MATH-M1 Q1)

10. Expand the following in ascending powers of x as far as the term in x^2 :

DSE Mathematics Module 1

1. Binomial Expansion

- (a) e^{-2x} ;
- (b) $\frac{(1+2x)^6}{e^{2x}}$

(4 marks) (SAMPLE DSE-MATH-M1 Q1)

Math & Stat

- 11. (a) (i) Expand $(x + y + z)^2$.
 - (ii) Find the coefficients of x^3y , x^3z , xy^3 , y^3z , xz^3 and yz^3 in the expansion of $(x+y+z)^4$
 - (b) If a cup is randomly selected from a box containing red cups, blue cups and green cups, the probabilities of getting a red cup, a blue cup and a green cup are p, q and r respectively. If 4 cups are randomly selected from the box one by one with replacement, find, in terms of p, q and r,
 - (i) the probability that at least 2 cups of different colours are selected;
 - (ii) the probability that exactly 3 cups of the same colour are selected.

(7 marks)

(2004 ASL-M&S O4)

DSE Mathematics Module 1

1. Binomial Expansion

Out of Syllabus

- 12. (a) Expand e^{-2x} in ascending powers of x as far as the term in x^3 .
 - (b) Using (a), expand $\frac{(1+x)^{\frac{1}{2}}}{e^{2x}}$ in ascending powers of x as far as the term in x^3 .

State the range of values of x for which the expansion is valid.

(6 marks) (1999 ASL-M&S O2)

- 13. (a) Prove that $\frac{1}{1+\sqrt{1-x}} = \frac{1}{x} (1-\sqrt{1-x})$ for x < 1 and $x \ne 0$.
 - (b) Let $I = \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{1 + \sqrt{1 x}} dx$. By considering the expansion of $\frac{1}{1 + \sqrt{1 x}}$ in ascending powers

of x as far as the term in x^2 , estimate the value of I.

(c) Let $J = \int_{-2}^{-1} \frac{1}{1 + \sqrt{1 - x}} dx$. Can we use the same method in (b) to estimate the value of J? Explain your answer.

(7 marks)

(2011 ASL-M&S Q1)

Suggested modification

- 14. (a) Expand $\frac{(1+x)^{10}-1}{x}$ in ascending powers of x as far as the term in x^2 .
 - (b) Let $I = \int_{0.1}^{0.2} \frac{(1+x)^{10}-1}{x} dx$. By using (a), estimate the value of I.
 - (c) Determine whether the estimate in (b) is an over-estimate or an under-estimate.

IM

Binomial Expansion

(2019 DSE-MATH-M1 O6)

(a)
$$e^{-18x}$$

= $1 + (-18x) + \frac{(-18x)^2}{2!} + \cdots$
= $1 - 18x + 162x^2 + \cdots$

$$=1-18x+162x^{2}+\cdots$$

$$(1+4x)^{n}$$

$$=1+C_{1}^{n}(4x)+C_{2}^{n}(4x)^{2}+\cdots+C_{n}^{n}(4x)^{n}$$

$$=1+4C_{1}^{n}x+16C_{2}^{n}x^{2}+\cdots+4^{n}x^{n}$$

$$16C_{2}^{n}-72C_{1}^{n}+162=-38$$

$$16\left(\frac{n(n-1)}{2}\right)-72n+162=-38$$

$$n^{2}-10n+25=0$$

$$n=5$$

$$1M$$

$$1A$$

(2018 DSE-MATH-M1 O6)

(a)
$$e^{kx} + e^{2x}$$

 $= \left(1 + kx + \frac{(kx)^2}{2!} + \cdots\right) + \left(1 + 2x + \frac{(2x)^2}{2!} + \cdots\right)$
 $= 2 + (k+2)x + \frac{(k^2+4)}{2}x^2 + \cdots$

 $(1-3x)^{8}$

 $=1+C_1^8(-3x)+C_2^8(-3x)^2+\cdots$

 $=1+(k+2)x+\frac{(k^2+4)}{2}x^2+\cdots$

 $(1)(k+2) + (-24)(1) = (1)\left(\frac{k^2+4}{2}\right) + (-24)(k+2) + (252)(1)$

 $=1-24x+252x^2+\cdots$

 $k^2 - 50k + 456 = 0$ k = 12 or k = 38

for expanding ekx or e2x

(2017 DSE-MATH-M1 Q5)

Marking 1.1

DSE Mathematics Module 1 $(1+e^{3x})^2$ $=1+2e^{3x}+e^{6x}$ 1M $=1+2\left(1+3x+\frac{(3x)^2}{2!}+\cdots\right)+\left(1+6x+\frac{(6x)^2}{2!}+\cdots\right)$ for expanding e^{3x} or e^{6x} 1M 1A $=4+12x+27x^2+\cdots$ $(1+e^{3x})^2$ $= \left(1 + 1 + 3x + \frac{(3x)^2}{2!} + \cdots\right)^2$ for expanding e^{3x} 1M $= (2)(2) + (2)(2)(3x) + (3x)(3x) + (2)(2)\left(\frac{9x^2}{2}\right) + \cdots$ 1M 1A $=4+12x+27x^2+\cdots$ $(5-x)^4$ (b) $=5^4-C_1^4(5^3)x+C_2^4(5^2)x^2-C_3^4(5)x^3+x^4$ 1M $=625-500x+150x^2-20x^3+x^4$ The required coefficient withhold 1M if the step is skipped 1M =(625)(27)+(-500)(12)+(150)(4)1A =11475

(a)	Very good. Most candidates were able to expand	$(1+e^{3x})^2.$
(h)	Non-road Mart and ideta- was all to Cod the	

DSE Mathematics Module 1

1. Binomial Expansion

4. (2016 DSE-MATH-M1 O5)

(a)	e ^{kx}		
	$=1+k\alpha+\frac{(k\alpha)^2}{2!}+\cdots$		
	$=1+kx+\frac{k^2x^2}{2}+\cdots$	1A	
(b)	$(1+2x)^7 e^{kx}$		
	$= \left(1 + C_1^7(2x) + C_2^7(2x)^2 + \dots + (2x)^7\right)\left(1 + kx + \frac{k^2x^2}{2} + \dots\right)$	1M	
	$= \left(1 + 14x + 84x^2 + \dots + (2x)^7\right)\left(1 + kx + \frac{k^2x^2}{2} + \dots\right)$		
	$\therefore 14 + k = 8$ $k = -6$	1M	
	The coefficient of x^2 .		
	$= (1) \left(\frac{(-6)^2}{2} \right) + 14(-6) + (84)(1)$	1M	
	= 18	1A (5)	

(a)	Very good. A very high proportion of the candidates were able to expand	e^{kx}	while some
	candidates were unable to simplify the coefficient of x^2 .		

Very good. More than 70% of the candidates were able to find the coefficient of
$$x^2$$
 while a small number of candidates made careless mistakes in expanding $(1+2x)^7$.

DSE Mathematics Module 1

1. Binomial Expansion

(2015 DSE-MATH-M1 O5)

(a)
$$e^{-4x}$$

 $= 1 + (-4x) + \frac{(-4x)^2}{2!} + \cdots$
 $= 1 - 4x + 8x^2 - \cdots$ IM

(b) $(2 + x)^5$

$$= 2^{5} + C_{1}^{5}(2^{4})x + C_{2}^{5}(2^{3})x^{2} + \dots + x^{5}$$

$$= 32 + 80x + 80x^{2} + \dots + x^{5}$$
The required coefficient
$$= (1)(80) + (-4)(80) + (8)(32)$$

$$= 16$$

$$1M$$

$$1A$$
.......(5

(a)	Very good. Most candidates were able to expand e^{-4x} while a few candidates failed to show working steps.
(b)	Very good. Most candidates were able to find the coefficient of x^2 while a few candidates made a carless mistake in expanding $(2+x)^5$ as
	the state of the s
	$2^5 + C_1^5(2^4)x + C_2^5(2^3)x^2 + \dots + x^5$.

6. (2014 DSE-MATH-M1 Q3)

(a)
$$\frac{dy}{dx}\Big|_{(1,5)} = \left(2 \cdot 1 - \frac{1}{1}\right)^3$$

$$= 1$$
Hence the equation of tangent is $y - 5 = 1(x - 1)$.
i.e. $x - y + 4 = 0$

(b) (i)
$$\left(2x - \frac{1}{x}\right)^3 = (2x)^3 - 3(2x)^2 \left(\frac{1}{x}\right) + 3(2x) \left(\frac{1}{x}\right)^2 - \left(\frac{1}{x}\right)^3$$

$$= 8x^3 - 12x + \frac{6}{x} - \frac{1}{x^3}$$
1A

(ii)
$$y = \int (2x - \frac{1}{x})^3 dx$$

$$= \int (8x^3 - 12x + \frac{6}{x} - \frac{1}{x^3}) dx \qquad \text{by (i)}$$

$$= 2x^4 - 6x^2 + 6\ln|x| + \frac{1}{2x^2} + C$$

Since
$$P(1,5)$$
 lies on S , $5 = 2(1)^4 - 6(1)^2 + 6 \ln|1| + \frac{1}{2(1)^2} + C$. 1M
i.e. $C = \frac{17}{2}$

Hence the equation of S is
$$y = 2x^4 - 6x^2 + 6 \ln x + \frac{1}{2x^2} + \frac{17}{2}$$
 for $x > 0$.

(a) (b)	(i) (ii)	Very good. Excellent. Satisfactory.	
	()	Some candidates did not know $\int \frac{1}{x} dx = \ln x + C$, or wrote $\int \frac{1}{x^2} dx = -\frac{2}{x^2}$ or	
		$\frac{1}{2x^2}$.	

1 A

IM

1M

IA

- 7. (2013 DSE-MATH-M1 Q1)
- (a) $\left(u + \frac{1}{u}\right)^4 = u^4 + 4u^3 \left(\frac{1}{u}\right) + 6u^2 \left(\frac{1}{u}\right)^2 + 4u \left(\frac{1}{u}\right)^3 + \left(\frac{1}{u}\right)^4$ = $u^4 + 4u^2 + 6 + \frac{4}{u^2} + \frac{1}{u^4}$
- (b) $(e^{ax} + e^{-ax})^4$ $= e^{4ax} + 4e^{2ax} + 6 + 4e^{-2ax} + e^{-4ax}$ by (a) $= \left[1 + \frac{4ax}{1!} + \frac{(4ax)^2}{2!} + \cdots\right] + 4\left[1 + \frac{2ax}{1!} + \frac{(2ax)^2}{2!} + \cdots\right] + 6$ $+ 4\left[1 + \frac{-2ax}{1!} + \frac{(-2ax)^2}{2!} + \cdots\right] + \left[1 + \frac{-4ax}{1!} + \frac{(-4ax)^2}{2!} + \cdots\right]$ $= 1 + 4ax + 8a^2x^2 + 4 + 8ax + 8a^2x^2 + 6 + 4 - 8ax + 8a^2x^2 + 1 - 4ax + 8a^2x^2 + \cdots$ $= 16 + 32a^2x^2 + \cdots$
- (c) $32a^2 = 2$ $a^2 = \frac{1}{16}$ $a = \pm \frac{1}{4}$ 1A
 - (a) Excellent. A few candidates neglected the requirement 'in descending powers of u' when expanding \$\left(u + \frac{1}{u}\right)^4\$.
 (b) Satisfactory. Some candidates repeated steps in (a) because they did not make use of the fact that \$e^{-ax} = \frac{1}{e^{ax}}\$. Some candidates were not able to use power series of an exponential function, while some others expressed \$\left(e^{ax} + e^{-ax}\right)^4\$ in powers of \$e^{2ax}\$.
 (c) Poor. Many candidates were not able to get the correct answer of (b), hence failed to get the answer for this part.

8. (2012 DSE-MATH-M1 O1)

DSE Mathematics Module 1

- (a) Very good. A minority of candidates, however, did not simplify the results obtained.

 (b) Very good. A minority of candidates, however, did not reject the negative root $\frac{-8}{3}$.
- 9. (PP DSE-MATH-M1 O1)

(a)
$$(2x+1)^3 = 8x^3 + 12x^2 + 6x + 1$$

(b)
$$e^{-ax} = 1 - ax + \frac{a^2x^2}{2} - \cdots$$

(c)
$$\frac{(2x+1)^3}{e^{ax}} = (8x^3 + 12x^2 + 6x + 1)\left(1 - ax + \frac{a^2x^2}{2} - \dots\right)$$

The coefficient of $x^2 = 12(1) + 6(-a) + (1)\frac{a^2}{2}$

$$\frac{a^2}{2} - 6a + 12 = -4$$

$$a^2 - 12a + 32 = 0$$

$$a = 4 \text{ or } 8$$

(5)

1A

(a)	甚佳。	很多學生熟識二項式展式。
(b)	甚佳。	少部分學生未能展開指數函數。
(c)	良好。	少部分學生未能正確利用(b) 的結果

10. (SAMPLE DSE-MATH-M1 Q1)

(a)
$$e^{-2x} = 1 + (-2x) + \frac{(-2x)^2}{2!} - \cdots$$

= $1 - 2x + 2x^2 + \cdots$

(b)
$$\frac{(1+2x)^6}{e^{2x}} = [1+6(2x)+15(2x)^2+\cdots] \cdot e^{-2x}$$
$$= (1+12x+60x^2+\cdots)(1-2x+2x^2+\cdots)$$
$$= 1+10x+38x^2+\cdots$$

1A

1A

For
$$1+6(2x)+15(2x)^2+\cdots$$

1M

For using (a)

(pp-1) if dots were omitted in most cases

Marking 1.6

1. Binomial Expansion

11. (2004 ASL-M&S O4)

Fair. Many candidates did not make use of the fact that p+q+r=1, which simplifies the expressions.