2. System of Linear Equations

(1991-AL-P MATH 1 #03) (4 marks)

3. Consider the following system of linear equations:

$$\begin{cases} x + 2y + z = 1 \\ x + y + 2z = 2 \\ - y + q^2 z = q \end{cases}$$

Determine all values of q for each of the following cases:

- (a) The system has no solution.
- (b) The system has infinitely many solutions.

(1992-AL-P MATH 1 #01) (6 marks)

1. Consider the following system of linear equations:

$$\begin{pmatrix}
x + (t+3)y + 5z = 3 \\
-3x + 9y - 15z = s \\
2x + ty + 10z = 6
\end{pmatrix}$$

- (a) If (*) is consistent, find s and t.
- (b) Solve (*) when it is consistent.

(1993-AL-P MATH 1 #03) (6 marks)

1 Suppose the following system of linear equation is consistent:

(*)
$$\begin{cases} ax + by + cz = 1 \\ bx + cy + az = 1 \\ cx + ay + bz = 1 \\ x + y + z = 3 \end{cases}$$
, where $a, b, c \in \mathbf{R}$.

- (a) Show that a+b+c=1.
- (b) Show that (*) has a unique solution if and only if a, b and c are not all equal.
- (c) If a = b = c, solve (*).

(1994-AL-P MATH 1 #02) (6 marks)

1. Consider the following system of linear equations:

(*)
$$\begin{cases} 4x + 3y + z = \lambda x \\ 3x - 4y + 7z = \lambda y \\ x + 7y - 6z = \lambda z \end{cases}$$

Suppose λ is an integer and (*) has nontrivial solutions.

Find λ and solve (*).

(1994-AL-P MATH 1 #09) (15 marks)

9. (a) Consider

(I):
$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = 0 \\ a_{21}x + a_{22}y + a_{23}z = 0 \\ a_{31}x + a_{32}y + a_{33}z = 0 \end{cases}$$
 and (II):
$$\begin{cases} a_{11}x + a_{12}y + a_{13} = 0 \\ a_{21}x + a_{22}y + a_{23} = 0 \\ a_{31}x + a_{32}y + a_{33} = 0 \end{cases}$$

- (i) Show that if (I) has a unique solution, then (II) has no solution.
- (ii) Show that (u, v) is a solution of (II) if and only if (ut, vt, t) are solutions of (I) for all $t \in \mathbf{R}$.
- (iii) If (II) has no solution and (I) has nontrivial solutions, what can you say about the solutions of (I)?

(b) Consider

(III):
$$\begin{cases} -(3+k)x + y - z = 0\\ -7x + (5-k)y - z = 0\\ -6x + 6y + (k-2)z = 0 \end{cases}$$

and

$$(IV): \begin{cases} -(3+k)x + y - 1 = 0 \\ -7x + (5-k)y - 1 = 0 \\ -6x + 6y + (k-2) = 0 \end{cases}$$

- (i) Find the values of k for which (III) has non-trivial solutions.
- (ii) Find the values of k for which (IV) is consistent. Solve (IV) for each of these values of k.
- (iii) Solve (III) for each k such that (III) has non-trivial solutions.

(1995-AL-P MATH 1 #09) (15 marks)

9. Consider the following system of linear equations

(S):
$$\begin{cases} 2x + 2y - z = k \\ hx - 3y - z = 0 \\ -3x + hy + z = 0 \end{cases}$$

and

(T):
$$\begin{cases} 6x + 6y - 3z = 2 \\ hx - 3y - z = 0 \\ -3x + hy + z = 0 \\ -5x - 2y + 6z = h \end{cases}$$

- (a) Show that (S) has a unique solution if and only if $h^2 \neq 9$. Solve (S) in this case.
- (b) For each of the following cases, find the value(s) of k for which (S) is consistent, and solve (S):
 - (i) h = 3,
 - (ii) h = -3.
- (c) Find the values of h for which (T) is consistent. Solve (T) for each of these values of h.

(1996-AL-P MATH 1 #05) (6 marks)

1. (a) Solve
$$\begin{cases} Z + Y & = a \\ Z + X = b \text{ for } X, Y \text{ and } Z. \\ Y + X = c \end{cases}$$

b) If
$$a + b - c > 0$$
, $b + c - a > 0$ and $c + a - b > 0$, solve
$$\begin{cases} xy + xz &= a \\ xy + yz &= b \text{ for } x, y \text{ and } z. \\ xz + yz &= c \end{cases}$$

(1996-AL-P MATH 1 #09) (15 marks)

9. Consider the system of linear equations

(*):
$$\begin{cases} x + 2y - z = 3 \\ x + y + 2z = 4 \end{cases}$$

- (a) Solve (*).
- (b) Find the solutions of (*) that satisfy xy + yz + zx = 2.
- (c) Find all possible values of a and λ (a, $\lambda \in \mathbf{R}$) so that

$$\begin{cases} x + 2y - z = 3 \\ x + y + 2z = 4 \\ ax + y + z = \lambda \end{cases}$$

is solvable.

(d) Using (b), or otherwise, find all possible values of a and λ (a, $\lambda \in \mathbf{R}$) so that

$$\begin{cases} x + 2y - z = 3 \\ x + y + 2z = 4 \\ xy + yz + zx = 2 \\ ax + y + z = \lambda \end{cases}$$

has at least one solution.

(1997-AL-P MATH 1 #03) (6 marks)

3. Suppose the system of linear equations

$$\begin{pmatrix}
\lambda x + ky & = 0 \\
 & -\lambda y + z & = 0 \\
 x + ky + z & = 0
\end{pmatrix}$$

has nontrivial solutions.

- (a) Show that λ satisfies the equation $\lambda^2 + k\lambda k = 0$.
- (b) If the quadratic equations in λ in (a) has equal roots, find k. Solve (*) for each of these values of k.

(1997-AL-P MATH 1 #08) (15 marks)

8. Consider the following two systems of linear equations:

(S):
$$\begin{cases} (a+1)x + 2y - 2z = 0\\ x + ay + 2z = 0\\ 3x - y + (a-7)z = 0 \end{cases}$$

(T):
$$\begin{cases} (a+1)x + 2y - 2z = 6 \\ x + ay + 2z = 5b - 1 \\ 3x - y + (a-7)z = 1 - b \end{cases}$$

- (a) If (S) has infinitely many solutions, find all the values of a. Solve (S) for each of these values of a.
- (b) For the smallest value of a found in (a), find the values of b so that (T) is consistent. Solve (T) for these values of a and b.
- (c) Solve the system of equations

$$\begin{cases}
-x + 2y - 2\sqrt{z} = 6 \\
x - 2y + 2\sqrt{z} = -6 \\
3x - y - 9\sqrt{z} = 2 \\
3x - 4y - z = -11
\end{cases}$$

(1998-AL-P MATH 1 #01) (6 marks)

1. Consider the system of linear equations

(*)
$$\begin{cases} 2x + y + 2z = 0 \\ x + (k+1)z = 0 \\ kx - y + 4z = 0 \end{cases}$$

Suppose (*) has infinitely many solutions.

- (a) Find k.
- (b) Solve (*).

(1998-AL-P MATH 1 #08) (15 marks)

8. Consider the system of linear equations in

(E):
$$\begin{cases} ax + y + bz = 1 \\ x + ay + bz = 1 \\ x + y + abz = b \end{cases}$$

- (a) Show that (E) has a unique solution if and only if $a \neq -2$, $a \neq 1$ and $b \neq 0$. Solve (E) in this case.
- (b) For each of the following cases, determine the value(s) of b for which (E) is consistent. Solve (E) in each case.
 - (i) a = -2,
 - (ii) a = 1.
- (c) Determine whether (E) is consistent or not for b = 0.

(1999-AL-P MATH 1 #01) (6 marks)

1. Suppose the system of linear equations

$$\begin{cases}
 x + y - \lambda z = 0 \\
 x + \lambda y - z = 0 \\
 \lambda x + y - z = 0
\end{cases}$$

has non-trivial solutions.

- (a) Find all values of λ .
- (b) Solve (*) for each of the values of λ obtained in (a).

(1999-AL-P MATH 1 #08) (15 marks)

8. Consider the system of linear equations

(E):
$$\begin{cases} x + \lambda y + z = \lambda \\ 3x - y + (\lambda + 2)z = 7 \text{ where } \lambda \in \mathbf{R} \\ x - y + z = 3 \end{cases}$$

- (a) Show that (E) has a unique solution if and only if $\lambda \neq \pm 1$.
- (b) Solve (E) for
 - (i) $\lambda \neq \pm 1$,
 - (ii) $\lambda = -1$,
 - (iii) $\lambda = 1$.
- (c) Find the conditions on a, b, c and d so that the system of linear equations

$$\begin{cases} x + y + z = 1 \\ 3x - y + 3z = 7 \\ x - y + z = 3 \\ ax + by + cz = d \end{cases}$$

is consistent.

(2000-AL-P MATH 1 #08) (15 marks)

8. Consider the system of linear equations

(S):
$$\begin{cases} x - y - z = a \\ 2x + \lambda y - 2z = b \text{ where } \lambda \in \mathbf{R} \\ x + (2\lambda + 3)y + \lambda^2 z = c \end{cases}$$

- (a) Show that (S) has a unique solution if and only if $\lambda \neq -2$. Solve (S) for $\lambda = -1$.
- (b) Let $\lambda = -2$.
 - (i) Find the conditions on a, b and c so that (S) has infinitely many solutions.
 - (ii) Solve (S) when a = -1, b = -2 and c = -3.
- (c) Consider the system of linear equations

(T):
$$\begin{cases} x - y - z + 3\mu - 5 = 0 \\ 2x - 2y - 2z + 2\mu - 2 = 0 \text{ where } \mu \in \mathbf{R} \\ x - y + 4z - \mu - 1 = 0 \end{cases}$$

Using the results in (b), or otherwise, solve (T).

(2001-AL-P MATH 1 #09) (15 marks)

9. Consider the system of linear equations

(S):
$$\begin{cases} x + \lambda y + z = k \\ \lambda x - y + z = 1 \text{ where } \lambda, k \in \mathbf{R} \\ 3x + y + 2z = -1 \end{cases}$$

- (a) Show that (S) has a unique solution if and only if $\lambda \neq 0$ and $\lambda \neq 2$.
- (b) For each of the following cases, determine the value(s) of k for which (S) is consistent. Solve (S) in each case.
 - (i) $\lambda \neq 0$ and $\lambda \neq 2$,
 - (ii) $\lambda = 0$,
 - (iii) $\lambda = 2$.
- (c) If some solution of (x, y, z) of

$$\begin{cases} x & + z = 0 \\ - y + z = 1 \\ 3x + y + 2z = -1 \end{cases}$$

satisfies $(x - p)^2 + y^2 + z^2 = 1$, find the range of values of p.

(2002-AL-P MATH 1 #08) (15 marks)

8. (a) Consider the system of linear equations in x, y, z.

(S):
$$\begin{cases} ax - 2y + z = 0 \\ x - y + 2z = b \text{, where a , } b \in \mathbf{R} \text{.} \\ y + az = b \end{cases}$$

- (i) Show that (S) has a unique solution if and only if $a^2 \neq 1$. Solve (S) in this case.
- (ii) For each of the following cases, determine the value(s) of b for which (S) is consistent, and solve (S) for such value(s) of b.
 - (1) a = 1,
 - (2) a = -1.
- (b) Consider the system of linear equations in x, y, z

(T):
$$\begin{cases} ax - 2y + z = 0 \\ x - y + 2z = -1 \\ y + az = -1 \end{cases}$$
, where $a \in \mathbf{R}$.
$$5x - 2y + z = a$$

Find all the values of a for which (T) is consistent. Solve (T) for each of these values of a.

(2003-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the system of linear equations in x, y, z.

(E):
$$\begin{cases} x + ay - z = 0 \\ 2x - y + az = -2a \text{, where } a \in \mathbf{R} \\ -x + 2a^2y + (a-3)z = 2a \end{cases}$$

- (i) Find the range of values of a for which (E) has a unique solution. Solve (E) when (E) has a unique solution.
- (ii) Solve (E) for
 - (1) a = 1,
 - (2) a = -4.
- (b) Suppose (x, y, z) satisfy

$$\begin{cases} x + y - z = 0 \\ 2x - y + z = -2 \\ -x + 2y - 2z = 2 \end{cases}$$

Find the least value of $24x^2 + 3y^2 + 2z$ and the corresponding values of x , y , z .

(2004-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the system of linear equations in x, y, z

(E):
$$\begin{cases} x + (a-2)y + az = 1 \\ x + 2y + 4z = 1 \\ ax - y + 3z = b \end{cases}$$
, where $a, b \in \mathbf{R}$.

- (i) Prove that (E) has a unique solution if and only if $a \neq 2$ and $a \neq 4$. Solve (E) in this case.
- (ii) For each of the following cases, determine the value(s) of b for which (E) is consistent, and solve (E) for such value(s) of b.
 - (1) a = 2,
 - (2) a = 4.
- (b) If all solutions (x, y, z) of

$$\begin{cases} x + + 2z = 1 \\ x + 2y + 4z = 1 \\ 2x - y + 3z = 2 \end{cases}$$

satisfy $k(x^2 - 3) > yz$, find the range of values of k.

(2005-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the system of linear equations in x, y, z

(E):
$$\begin{cases} x + ay + z = b \\ 2x + (a+3)y + (a-1)z = 0 \\ 3x + a^2y + (4a+1)z = -b \end{cases}$$
, where $a, b \in \mathbb{R}$.

- (i) Find the range of values of a for which (E) has a unique solution. Solve (E) when (E) has a unique solution.
- (ii) For each of the following cases, find the value(s) of b for which (E) is consistent, and solve (E) for such value(s) of b.
 - (1) a = 1,
 - (2) a = -2.
- (b) Suppose that a real solution of

$$\begin{cases} x - 2y + z = b \\ 2x + y - 3z = 0 \\ 3x + 4y - 7z = -b \end{cases}$$

satisfies $x^2 + y^2 + z^2 = b + 3$, where $b \in \mathbf{R}$. Find the range of values of b.

(2006-AL-P MATH 1 #07) (15 marks)

7. Consider the system of linear equations in x, y, z

(E):
$$\begin{cases} x + ay + z = 4 \\ x + (2-a)y + (3b-1)z = 3 \text{, where } a, b \in \mathbf{R} \\ 2x + (a+1)y + (b+1)z = 7 \end{cases}$$

- (a) Prove that (E) has a unique solution if and only if $a \ne 1$ and $b \ne 0$. Solve (E) in this case.
- (b) (i) For a = 1, find the value(s) of b for which (E) is consistent, and solve (E) for such value(s) of b.
 - (ii) Is there a real solution (x, y, z) of

$$\begin{cases} x + y + z = 4 \\ 2x + 2y + z = 6 \\ 4x + 4y + 3z = 14 \end{cases}$$

satisfying $x^2 - 2y^2 - z = 14$? Explain your answer.

(c) Is (E) consistent for b = 0? Explain your answer.

(2007-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the system of linear equations in x, y, z.

(E):
$$\begin{cases} x - 3y & = 1 \\ x + 5y + az = b \text{, where } a, b \in \mathbf{R} \\ 2x + ay - z = 2 \end{cases}$$

- (i) Find the range of values of a for which (E) has a unique solution. Solve (E) when (E) has a unique solution
- (ii) Suppose that a = -2. Find the value(s) of b for which (E) is consistent, and solve (E) for such value(s) of b.
- (b) Is the system of linear equations

$$\begin{cases} x - 3y & = 1 \\ x + 5y + z & = 16 \\ 2x + y - z & = 2 \\ x - y - z & = 3 \end{cases}$$

consistent? Explain your answer.

(c) Solve the system of linear equations

$$\begin{cases} x - 3y & = 1 \\ x + 5y - 2z & = 16 \\ 2x - 2y - z & = 2 \\ x - y - z & = 3 \end{cases}$$

(2008-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the system of linear equations in x, y, z.

(E):
$$\begin{cases} x + (a+2)y + (a+1)z = 1 \\ x - 3y - z = b \text{, where } a, b \in \mathbf{R} \\ 3x - 2y + (a-1)z = 1 \end{cases}$$

- (i) Prove that (E) has a unique solution if and only if $a^2 \neq 4$. Solve (E) when (E) has a unique solution.
- (ii) For each of the following cases, find the value(s) of b for which (E) is consistent, and solve (E) for such value(s) of b.
 - (1) a = 2,
 - (2) a = -2.
- (b) Find the greatest value of $2x^2 + 15y^2 10z^2$, where x, y and z are real numbers satisfying

$$\begin{cases} x + 4y + 3z = 1 \\ x - 3y - z = 0 \\ 3x - 2y + z = 1 \end{cases}$$

(2009-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the system of linear equations in x, y, z.

(E):
$$\begin{cases} x + \lambda y + 2z = 1 \\ 5x - \lambda y + z = 5 \\ \lambda x - y + z = a \end{cases}$$
, where λ , $a \in \mathbb{R}$.

- (i) Find the range of values of λ for which (E) has a unique solution. Solve (E) when (E) has a unique solution.
- (ii) Suppose that $\lambda = -1$. Find the value(s) of a for which (E) is consistent, and solve (E) for such value(s) of a.
- (b) Is the system of linear equations

$$\begin{cases} x - 2y + 2z = 1 \\ 5x + 2y + z = 5 \\ 2x + y - z = -3 \\ 4x + 3y - 3z = 2 \end{cases}$$

consistent? Explain your answer.

(c) Find the solution(s) of the system of linear equations

$$\begin{cases} x - y + 2z = 1 \\ 5x + y + z = 5 \\ x + y - z = 1 \end{cases}$$

satisfying $4x^2 + 2y - z = 28$.

(2010-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the system of linear equations in x, y, z

(E):
$$\begin{cases} x + y + z = 2 \\ ax - 4z = 2 \text{, where } a, b \in \mathbf{R} \\ 3x + 4y + (a+4)z = b \end{cases}$$

- (i) Find the range of values of a for which (E) has a unique solution, and solve (E) when (E) has a unique solution.
- (ii) Suppose that a = 2. Find the value(s) of b for which (E) is consistent, and solve (E) for such value(s) of b.
- (b) Consider the system of linear equation in x, y, z

(F):
$$\begin{cases} x + y + z = 2 \\ x + 2z = -1 \\ 3x + 4y + 2z = \lambda \end{cases}$$
, where λ , $\mu \in \mathbb{R}$.

Find the values of λ and μ for which (F) is consistent.

(c) Consider the system of linear equation in x, y, z

(G):
$$\begin{cases} x + y + z = 2 \\ x - 6z = 3 \\ 9x + 12y + 14z = 15 \\ 5x - 2y - 18z = 16 \end{cases}$$

Is (G) consistent? Explain your answer.

(2011-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the system of linear equations in x, y, z

(S):
$$\begin{cases} y + (\lambda + 1)z = 0 \\ \lambda x + 2y + 2z = \mu, \text{ where } \lambda, \mu \in \mathbf{R} \\ x - \lambda y - 4z = \mu^2 \end{cases}$$

- (i) Suppose that $\mu = 0$.
 - (1) Prove that (S) has non-trivial solutions if and only if $\lambda^3 + \lambda^2 2\lambda = 0$.
 - (2) Solve (S) when $\lambda = 1$.
- (ii) Suppose that $\mu \neq 0$.
 - (1) Find the range of values of λ for which (S) has a unique solution.
 - (2) Solve (S) when (S) has a unique solution.
 - (3) Find λ and μ for which (S) has infinitely many solutions.
- (b) Is there a real solution (x, y, z) of the system of linear equations

$$\begin{cases} y + 2z = 0 \\ x + 2y + 2z = 1 \\ x - y - 4z = 1 \end{cases}$$

satisfying $3x^3 + 2y^2 - z^2 = 1$? Explain your answer.

(SP-DSE-MATH-EP(M2) #07) (5 marks)

7. Solve the system of linear equations

$$\begin{cases} x + 7y - 6z = -4 \\ 3x - 4y + 7z = 13 \\ 4x + 3y + z = 9 \end{cases}$$

(PP-DSE-MATH-EP(M2) #02) (4 marks)

2. Consider the following system of linear equations in x, y, z

$$\begin{cases} x - 7y + 7z = 0 \\ x - ky + 3z = 0 \\ 2x + y + kz = 0 \end{cases}$$
, where k is a real number.

If the system has non-trivial solutions, find the two possible values of k.

(2012-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the following system of linear equations in x, y, z

(E):
$$\begin{cases} x + 2y - z = 3 \\ 2x + 5y + (a-1)z = 4 \text{, where } a, b \in \mathbf{R} \text{.} \\ (a+2)x + y + (2a+1)z = b \end{cases}$$

- (i) Prove that (E) has a unique solution if and only if $a \neq -1$ and $a \neq -3$. Solve (E) when (E) has a unique solution.
- (ii) Suppose that a = -3. Find b for which (E) is consistent, and solve (E) when (E) is consistent.
- (b) Is the system of linear equations in real variables x, y, z

$$\begin{cases} x + 2y - z = 3 \\ 6x + 15y - 7z = 12 \\ 2x + 3y - 5z = -12 \\ 4x + 5y - 6z = 1 \end{cases}$$

consistent? Explain your answer.

(c) Find the least value of $3x^2 - 7y^2 + 8z^2$, where x, y and z are real numbers satisfying

$$\begin{cases} x + 2y - z = 3 \\ 2x + 5y - 4z = 4 \\ x - y + 5z = 9 \end{cases}$$

(2012-DSE-MATH-EP(M2) #08) (5 marks)

8. (a) Solve the following system of linear equations:

$$\begin{cases} x + y + z = 0 \\ 2x - y + 5z = 6 \end{cases}.$$

(b) Using (a), or otherwise, solve the following system of linear equations:

$$\begin{cases} x + y + z = 0 \\ 2x - y + 5z = 6 \\ x - y + \lambda z = 4 \end{cases}$$
, where λ is a constant.

(2013-AL-P MATH 1 #07) (15 marks)

7. (a) Consider the system of linear equations in real variables x, y, z

(E):
$$\begin{cases} 3x & -2y + z = 0\\ (2a+7)x - 5y + az = b, \text{ where } a, b \in \mathbf{R} \\ -x + ay - z = 1 \end{cases}$$

- (i) Find the range of values of a for which (E) has a unique solution, and solve (E) when (E) has a unique solution.
- (ii) Suppose that a = 1. Find b for which (E) is consistent, and solve (E) when (E) is consistent.
- (b) Consider the system of linear equations in real variables x, y, z

(F):
$$\begin{cases} 3x - 2y + z = 0 \\ -9x + 5y - z = -3 \\ -x + y - z = 1 \\ \lambda x + \mu y - 7z = 4\lambda \end{cases}$$
, where λ , $\mu \in \mathbb{R}$.

Find λ and μ for which (F) has infinitely many solutions.

(c) If the real solution of the system of linear equations $\begin{cases} 3x - 2y + z = 0 \\ 11x - 5y + 2z = \beta \text{ satisfies } \\ x - 2y + z = -1 \end{cases}$

$$4x^2 - y^2 + z^2 = 1$$
, find β .

(2013-DSE-MATH-EP(M2) #09) (5 marks)

9. Consider the following system of linear equations in x, y and z

(E):
$$\begin{cases} x - ay + z = 2\\ 2x + (1-2a)y + (2-b)z = a+4, \text{ where } a \text{ and } b \text{ are real numbers.} \\ 3x + (1-3a)y + (3-ab)z = 4 \end{cases}$$

It is given that (E) has infinitely many solutions.

- (a) Find the values of a and b.
- (b) Solve (E).

(2014-DSE-MATH-EP(M2) #09) (6 marks)

- 9. (a) Solve the system of linear equations $\begin{cases} x + y + z = 100 \\ x + 6y + 10z = 200 \end{cases}$
 - (b) In a store, the prices of each of small, medium and large marbles are \$0.5, \$3 and \$5 respectively. Aubrey plans to spend all \$100 for exactly 100 marbles, which include m small marbles, n medium marbles and k large marbles.

Aubrey claims that there is only one set of combination of m, n and k. Do you agree? Explain your answer.

(2015-DSE-MATH-EP(M2) #05) (6 marks)

5. Solve the following systems of linear equations in real variables x, y and z:

(a)
$$\begin{cases} x + y + z = 2 \\ 2x + 3y - 3z = 4 \end{cases}$$

(b)
$$\begin{cases} x + y + z = 2 \\ 2x + 3y - 3z = 4 \\ 3x + 2y + kz = 6 \end{cases}$$

(2016-DSE-MATH-EP(M2) #11) (12 marks)

11. (a) Consider the system of linear equations in real variables x, y, z

(E):
$$\begin{cases} x + y - z = 3 \\ 4x + 6y + az = b \\ 5x + (1-a)y + (3a-1)z = b-1 \end{cases}$$
, where $a, b \in \mathbb{R}$.

- (i) Assume that (E) has a unique solution.
 - (1) Prove that $a \neq -2$ and $a \neq -12$.
 - (2) Solve (E).
- (ii) Assume that a = -2 and (E) is consistent.
 - (1) Find b.
 - (2) Solve (E).
- (b) Is there a real solution of the system of linear equations

$$\begin{cases} x + y - z = 3 \\ 2x + 3y - z = 7 \\ 5x + 3y - 7z = 13 \end{cases}$$

satisfying $x^2 + y^2 - 6z^2 > 14$? Explain your answer.

(2017-DSE-MATH-EP(M2) #05) (6 marks)

5. Consider the system of linear equations in real variables x, y, z

(E):
$$\begin{cases} x + 2y - z = 11 \\ 3x + 8y - 11z = 49 \text{ , where } h, k \in \mathbf{R} \\ 2x + 3y + hz = k \end{cases}$$

- (a) Assume that (E) has a unique solution.
 - (i) Find the range of values of h.
 - (ii) Express z in terms of h and k.
- (b) Assume that (E) has infinitely many solutions. Solve (E).

(2018-DSE-MATH-EP(M2) #11) (12 marks)

11. (a) Consider the system of linear equations in real variables x, y, z

(E):
$$\begin{cases} x + ay + 4(a+1)z = 18 \\ 2x + (a-1)y + 2(a-1)z = 20 \text{, where } a, b \in \mathbf{R} \\ x - y - 12z = b \end{cases}$$

- (i) Assume that (E) has a unique solution.
 - (1) Find the range of values of a.
 - (2) Solve (E).
- (ii) Assume that a = 3 and (E) is consistent.
 - (1) Find b.
 - (2) Solve (E).
- (b) Consider the system of linear equations in real variables x, y, z

(F):
$$\begin{cases} x + 3y + 16z = 18 \\ x + y + 2z = 10 \\ x - y - 12z = s \end{cases}, \text{ where } s, t \in \mathbf{R}.$$
$$2x - 5y - 45z = t$$

Assume that (F) is consistent. Find s and t.

(2019-DSE-MATH-EP(M2) #06) (7 marks)

6. Consider the system of linear equations in real variables x, y, z

(E):
$$\begin{cases} x - 2y - 2z = \beta \\ 5x + \alpha y + \alpha z = 5\beta \text{, where } \alpha, \beta \in \mathbf{R} \\ 7x + (\alpha - 3)y + (2\alpha + 1)z = 8\beta \end{cases}$$

- (a) Assume that (E) has a unique solution.
 - (i) Find the range of values of α .
 - (ii) Express y in terms of α and β .
- (b) Assume that $\alpha = -4$. If (E) is inconsistent, find the range of values of β .

(2020-DSE-MATH-EP(M2) #11) (13 marks)

11. (a) Consider the system of linear equations in real variables x, y, z

(E):
$$\begin{cases} x - y - 2z = 1 \\ x - 2y + hz = k \\ 4x + hy - 7z = 7 \end{cases}$$
, where $h, k \in \mathbf{R}$.

- (i) Assume that (E) has a unique solution.
 - (1) Prove that $h \neq -3$.
 - (2) Solve (E).
- (ii) Assume that h = -3 and (E) is consistent.
 - (1) Prove that k = -2.
 - (2) Solve (E).
- (b) Consider the system of linear equations in real variables x, y, z

(F):
$$\begin{cases} x - y - 2z = 1 \\ x - 2y + hz = -2 \\ 4x + hy - 7z = 7 \end{cases}$$
 where $h \in \mathbf{R}$.

Someone claims that there are at least two values of h such that (F) has a real solution (x, y, z) satisfying $3x^2 + 4y^2 - 7z^2 = 1$. Do you agree? Explain your answer.

(2021-DSE-MATH-EP(M2) #08) (8 marks)

8. Consider the system of linear equations in real variables x, y, z

(E):
$$\begin{cases} x + (d-1)y + (d+3)z = 4-d \\ 2x + (d+2)y - z = 2d-5, \text{ where } d \in \mathbf{R} \\ 3x + (d+4)y + 5z = 2 \end{cases}$$

It is given that (E) has infinitely many solutions

- (a) Find d. Hence, solve (E).
- (b) Someone claims that (E) has a real solution (x, y, z) satisfying xy + 2xz = 3. Is the claim correct? Explain your answer.

ANSWERS

(1991-AL-P MATH 1 #03) (4 marks)

- 3. (a) q = -1
 - (b) q = 1

(1992-AL-P MATH 1 #01) (6 marks)

- 1. (a) s = -9, t can be any real number.
 - (b) When s = -9, t = -6, $\{(3 + 3m 5n, m, n) : m, n \in \mathbb{R}\}$; When s = -9, $t \neq -6$, $\{(3 - 5n, 0, n) : n \in \mathbb{R}\}$.

(1993-AL-P MATH 1 #03) (6 marks)

1 (c) $\{(m, n, 3 - m - n) : m, n \in \mathbb{R}\}\$

(1994-AL-P MATH 1 #02) (6 marks)

1. $\lambda = 0$, $\{(-t, t, t) : t \in \mathbf{R}\}$

(1994-AL-P MATH 1 #09) (15 marks)

- 9. (b) (i) k = -2, 2 or 4
 - (ii) k = -2, (IV) is inconsistent; k = 2, $x = -\frac{1}{4}$, $y = \frac{1}{4}$; k = 4, $x = -\frac{2}{9}$, $y = \frac{-5}{9}$.
 - (iii) k = -2, $\{(t, t, 0) : t \in \mathbf{R}\}$; k = 2, $\{(t, t, -4t) : t \in \mathbf{R}\}$; k = 4, $\{(2t, 5t, -9t) : t \in \mathbf{R}\}$.

(1995-AL-P MATH 1 #09) (15 marks)

- 9. (a) $\left\{ \left(\frac{-k}{h+3}, \frac{k}{h+3}, -k \right) \right\}$
 - (b) (i) k can be all values, $\left\{ \left(\frac{3k+5t}{12}, \frac{3k+t}{12}, t \right) : t \in \mathbf{R} \right\}$
 - (ii) k = 0, $\{(-t, t, 0) : t \in \mathbf{R}\}$
 - (c) For $h^2 \neq 9$, $k = \frac{2}{3}$, h = -2, $x = -\frac{2}{3}$, $y = \frac{2}{3}$, $z = -\frac{2}{3}$; $k = \frac{2}{3}$, h = -5, $x = \frac{1}{3}$, $y = -\frac{1}{3}$, $z = -\frac{2}{3}$. For h = 3, $k = \frac{2}{3}$, $t = \frac{17}{27}$, $x = \frac{17}{27}$, $y = \frac{7}{27}$, $z = \frac{10}{9}$.

(1996-AL-P MATH 1 #05) (6 marks)

- 1. (a) $X = \frac{1}{2}(b+c-a)$, $Y = \frac{1}{2}(a+c-b)$, $Z = \frac{1}{2}(a+b-c)$
 - (b) $x = \pm \sqrt{\frac{(a+b-c)(a+c-b)}{2(b+c-a)}}$, $y = \pm \sqrt{\frac{(a+b-c)(b+c-a)}{2(a+c-b)}}$, $z = \pm \sqrt{\frac{(a+c-b)(b+c-a)}{2(a+b-c)}}$

(1996-AL-P MATH 1 #09) (15 marks)

9. (a) $\{(5-5t, 3t-1, t) : t \in \mathbf{R}\}$

(b)
$$\left\{ (0,2,1), \left(\frac{50}{17}, \frac{4}{17}, \frac{7}{17} \right) \right\}$$

(c) If
$$a \neq \frac{4}{5}$$
, then $\lambda \in \mathbf{R}$; or If $a = \frac{4}{5}$, then $\lambda = 3$

(d) If
$$\lambda = 3$$
, then $a \in \mathbb{R}$; or $a = \frac{17\lambda - 11}{50}$

(1997-AL-P MATH 1 #03) (6 marks)

3. (b) When
$$k = -4$$
, $\lambda = 2$, $\{(2t, t, 2t) : t \in \mathbb{R}\}$; When $k = 0$, $\lambda = 0$, $\{(0, t, 0) : t \in \mathbb{R}\}$.

(1997-AL-P MATH 1 #08) (15 marks)

8. (a)
$$a = -2$$
, $\{(4t, 3t, t) : t \in \mathbb{R}\}$; $a = 3$, $\{(t, -t, t) : t \in \mathbb{R}\}$; $a = 5$, $\{(t, -t, 2t) : t \in \mathbb{R}\}$.

(b)
$$a = -2$$
, $b = -1$, $\{(2+4t, 4+3t, t) : t \in \mathbf{R}\}$

(c)
$$x = 6$$
, $y = 7$, $z = 1$

(1998-AL-P MATH 1 #01) (6 marks)

1. (a)
$$k = -4$$
 or 1

(b)
$$k = -4$$
, $\{(3t, -8t, t) : t \in \mathbf{R}\}$; $k = 1$, $\{(-2t, 2t, t) : t \in \mathbf{R}\}$.

(1998-AL-P MATH 1 #08) (15 marks)

8. (a)
$$x = \frac{-(a-b)}{(1-a)(2+a)}$$
, $y = \frac{-(a-b)}{(1-a)(2+a)}$, $z = \frac{2-b-ab}{(1-a)(2+a)b}$

(b) (i)
$$b = -2$$
, $\{(-1 - 2t, -1 - 2t, t) : t \in \mathbb{R}\}$

(ii)
$$b = 1$$
, $\{(1 - s - t, s, t) : s, t \in \mathbf{R}\}$

(c) Inconsistent

(1999-AL-P MATH 1 #01) (6 marks)

1. (a)
$$\lambda = -2 \text{ or } 1$$

(b)
$$\lambda = -2$$
, $\{(-t, -t, t) : t \in \mathbf{R}\}$; $\lambda = 1$, $\{(t - s, s, t) : s, t \in \mathbf{R}\}$.

(1999-AL-P MATH 1 #08) (15 marks)

8. (b) (i)
$$x = 4$$
, $y = \frac{\lambda - 3}{\lambda + 1}$, $z = \frac{-4}{\lambda + 1}$

(iii)
$$\{(2-t, -1, t) : t \in \mathbf{R}\}$$

(c)
$$a \neq c$$
, $b - 2c + d = 0$

(2000-AL-P MATH 1 #08) (15 marks)

8. (a)
$$x = \frac{c+a}{2}$$
, $y = b - 2a$, $z = \frac{c-2b+3a}{2}$

(b)
$$\lambda = -2$$
, $b - 2a = 0$; $a = -1$, $b = -2$ and $c = 3$, $\left\{ \left(t - \frac{1}{5}, t, \frac{4}{5} \right) : t \in \mathbb{R} \right\}$

(c) (i)
$$\mu = 2$$
, $a = -1$, $b = -2$ and $c = 3$, $\left\{ \left(t - \frac{1}{5}, t, \frac{4}{5} \right) : t \in \mathbf{R} \right\}$

(ii) $\mu \neq 2$, inconsistent

(2001-AL-P MATH 1 #09) (15 marks)

9. (b) (i)
$$x = \frac{3(\lambda + k)}{2\lambda(\lambda - 2)}$$
, $y = \frac{2\lambda k + \lambda - 3k}{2\lambda(\lambda - 2)}$, $z = \frac{(\lambda + 3)(\lambda + k)}{-2\lambda(\lambda - 2)}$

(ii)
$$k = 0$$
, $\{(-t, t - 1, t) : t \in \mathbf{R}\}$

(iii)
$$k = -2$$
, $\left\{ \left(-\frac{3t}{5}, -\frac{t+5}{5}, t \right) : t \in \mathbf{R} \right\}$

(c)
$$\frac{-1-\sqrt{3}}{2} \le p \le \frac{-1+\sqrt{3}}{2}$$

(2002-AL-P MATH 1 #08) (15 marks)

8. (a) (i)
$$x = \frac{-2b}{a+1}$$
, $y = \frac{-b(a-1)}{a+1}$, $z = \frac{2b}{a+1}$

(ii) (1)
$$b$$
 can be any number, $\{(2b-3t, b-t, t) : t \in \mathbb{R}\}$

(2)
$$b = 0$$
, $\{(-t, t, t) : t \in \mathbf{R}\}$

(b) (i)
$$b = -1$$
 When $a = 2$, $x = \frac{2}{3}$, $y = \frac{1}{3}$, $z = \frac{-2}{3}$; $a = -5$, $x = -\frac{1}{2}$, $y = \frac{3}{2}$, $z = \frac{1}{2}$.

(ii)
$$b = -1$$

When $a = 1$, $x = \frac{1}{4}$, $y = \frac{-1}{4}$, $z = \frac{-3}{4}$

(2003-AL-P MATH 1 #07) (15 marks)

7. (a) (i)
$$a \neq 1$$
, $a \neq \frac{-1}{2}$ and $a \neq -4$

$$x = \frac{-2a(4a+1)}{(2a+1)(a+4)}, y = \frac{4a}{(2a+1)(a+4)}, z = \frac{-2a}{a+4}$$

(ii) (1)
$$\left\{ \left(\frac{-2}{3}, \frac{2+3t}{3}, t \right) : t \in \mathbf{R} \right\}$$

(2) Inconsistent

(b) least value = 9,
$$x = \frac{-2}{3}$$
, $y = \frac{-1}{3}$, $z = -1$

(2004-AL-P MATH 1 #07) (15 marks)

7. (a) (i)
$$x = \frac{b-2}{a-2}$$
, $y = \frac{b-a}{2(a-2)}$, $z = \frac{a-b}{2(a-2)}$

(ii) (1) b = 2, $\{(1 - 2t, -t, t) : t \in \mathbb{R}\}$

(2)
$$b$$
 can be any value, $\left\{ \left(\frac{2b+1-10t}{9}, \frac{4-b-13t}{9}, t \right) : t \in \mathbf{R} \right\}$

(b)
$$\frac{-1}{6} < k < 0$$

(2005-AL-P MATH 1 #07) (15 marks)

7. (a) (i) $a \neq -2$, $a \neq 1$ and $a \neq 3$

$$x = \frac{b(a^2 - 6a - 3)}{(a - 1)(a - 3)}, y = \frac{4b}{(a - 1)(a - 3)}, z = \frac{-2b}{a - 1}$$

(ii) (1) b = 0, $\{(-2t, t, t) : t \in \mathbb{R}\}$

(2)
$$b$$
 can be any value, $\left\{ \left(\frac{b+5t}{5}, \frac{-2b+5t}{5}, t \right) : t \in \mathbf{R} \right\}$

(b)
$$\frac{-15}{7} \le b \le \frac{15}{2}$$

(2006-AL-P MATH 1 #07) (15 marks)

7. (a) $a \neq 1$ and $b \neq 0$

$$x = \frac{2ab - 4b + 1}{(a - 1)b}$$
, $y = \frac{2b - 1}{(a - 1)b}$, $z = \frac{1}{b}$

(b) (i)
$$b = \frac{1}{2}$$
, $\{(2-t,t,2) : t \in \mathbf{R}\}$

(2007-AL-P MATH 1 #07) (15 marks)

7. (a) (i) $a \neq -2$ and $a \neq -4$

$$x = \frac{a^2 + 6a + 3b + 5}{(a+2)(a+4)} , y = \frac{b-1}{(a+2)(a+4)} , z = \frac{(a+6)(b-1)}{(a+2)(a+4)}$$

(ii)
$$b = 1$$
, $\left\{ \left(\frac{4+3t}{4}, \frac{t}{4}, t \right) : t \in \mathbf{R} \right\}$

(c)
$$t = -1$$
, $x = -2$, $y = -1$, $z = -4$

(2008-AL-P MATH 1 #07) (15 marks)

7. (a) (i)
$$x = \frac{-a^2b - 3ab - a + 2}{4 - a^2}$$
, $y = \frac{2b}{a - 2}$, $z = \frac{3ab - a + 8b + 2}{4 - a^2}$

(ii) (1)
$$b = 0$$
, $\left\{ \left(\frac{3-5t}{7}, \frac{1-4t}{7}, t \right) : t \in \mathbf{R} \right\}$

(2)
$$b = -2$$
, $\{(1+t,1,t): t \in \mathbf{R}\}$

(b)
$$\frac{3}{2}$$

(2009-AL-P MATH 1 #07) (15 marks)

7. (a) (i)
$$\lambda \neq -1$$
 and $\lambda \neq 3$

$$x = \frac{a\lambda - 2\lambda - 3}{(\lambda + 1)(\lambda - 3)}, \quad y = \frac{3(a - \lambda)}{(\lambda + 1)(\lambda - 3)}, \quad z = \frac{2\lambda(\lambda - a)}{(\lambda + 1)(\lambda - 3)}$$

(ii)
$$a = -1$$
, $\left\{ \left(\frac{1-t}{2}, \frac{3t}{2}, t \right) : t \in \mathbf{R} \right\}$

(b)
$$\lambda = -2$$
, $a = 3$, inconsistent

(c)
$$\lambda = -1$$
, $a = -1$,
when $t = -2$, $x = 3$, $y = -6$, $z = -4$; when $t = 3$, $x = -2$, $y = 9$, $z = 6$.

(2010-AL-P MATH 1 #07) (15 marks)

7. (a) (i)
$$a \neq -2$$
 and $a \neq 2$

$$x = \frac{2(16 - 2b - a)}{4 - a^2}, \quad y = \frac{-22 - 6a + 4b + ab - 2a^2}{4 - a^2}, \quad z = \frac{-2 + 8a - ab}{4 - a^2}$$

(ii)
$$b = 7$$
, $\{(1 + 2t, 1 - 3t, t) : t \in \mathbb{R}\}$

(b)
$$\lambda = 9$$
, $\{(-1 - 2t, t + 3, t) : t \in \mathbb{R}\}$, $\mu = 44$

(c)
$$a = \frac{2}{3}$$
, $b = 5$, inconsistent

(2011-AL-P MATH 1 #07) (15 marks)

7. (a) (i) (2)
$$\{(2t, -2t, t) : t \in \mathbb{R}\}$$

(ii) (1)
$$\lambda \neq -2$$
, $\lambda \neq 0$ and $\lambda \neq 1$

(2)
$$x = \frac{\left(\lambda^2 + 2\lambda\mu + \lambda - 4\right)\mu}{\lambda(\lambda - 1)(\lambda + 2)}, y = \frac{(\lambda + 1)(1 - \lambda\mu)\mu}{\lambda(\lambda - 1)(\lambda + 2)}, z = \frac{(\lambda\mu - 1)\mu}{\lambda(\lambda - 1)(\lambda + 2)}$$

(3) When
$$\lambda = 1$$
, $\mu = 1$; when $\lambda = -2$, $\mu = \frac{-1}{2}$.

(b)
$$\lambda = 1$$
, $\mu = 1$, there is no real solution.

(SP-DSE-MATH-EP(M2) #07) (5 marks)

7.
$$\{(3-t, t-1, t) : t \in \mathbf{R}\}$$

(PP-DSE-MATH-EP(M2) #02) (4 marks)

2. k = 19 or 2

(2012-AL-P MATH 1 #07) (15 marks)

7. (a) (i)
$$x = \frac{2ab + 11a + 3b + 6}{2(a+1)(a+3)}$$
, $y = \frac{3a-b}{2(a+3)}$, $z = \frac{b-7a-12}{2(a+1)(a+3)}$

(ii)
$$b = -9$$
, $\{(7-3t, 2t-2, t) : t \in \mathbb{R}\}$

(b)
$$a = -\frac{4}{3}$$
, $b = -4$, inconsistent

(c)
$$a = -3$$
, $b = -9$, least value = -56

(2012-DSE-MATH-EP(M2) #08) (5 marks)

8. (a)
$$\{(2-2t, t-2, t) : t \in \mathbf{R}\}$$

(b) When
$$\lambda \neq 3$$
, $x = 2$, $y = -2$, $z = 0$; when $\lambda = 3$, $\{(2 - 2t, t - 2, t) : t \in \mathbb{R}\}$.

(2013-AL-P MATH 1 #07) (15 marks)

7. (a) (i)
$$a \ne 1$$
 and $a \ne 4$

$$x = \frac{2a + 2b - ab - 5}{(a - 1)(a - 4)}, y = \frac{a + 2b - 7}{(a - 1)(a - 4)}, z = \frac{1 + 3ab - 4a - 2b}{(a - 1)(a - 4)}$$

(ii)
$$b = 3$$
, $\{(t, 2t - 1, t - 2) : t \in \mathbf{R}\}$

(b)
$$a = 1$$
, $b = 3$, $\lambda = 3$, $\mu = 2$

(c)
$$\beta = 1$$
 or 2

(2013-DSE-MATH-EP(M2) #09) (5 marks)

9. (a)
$$a = 2$$
 or $b = 0$

(b)
$$\{(6-t, -2, t) : t \in \mathbf{R}\}$$

(2014-DSE-MATH-EP(M2) #09) (6 marks)

9. (a)
$$\left\{ \left(80 + \frac{4t}{5}, 20 - \frac{9t}{5}, t \right) : t \in \mathbf{R} \right\}$$

(b)
$$t = 0$$
, 5 or 10 Disagreed.

(2015-DSE-MATH-EP(M2) #05) (6 marks)

5. (a)
$$\{(2-6t,5t,t): t \in \mathbb{R}\}$$

(b)
$$k = 8$$
, $\{(2 - 6t, 5t, t) : t \in \mathbf{R}\}$
 $k \neq 8$, $t = 0$, $x = 2$, $y = 0$, $z = 0$

(2016-DSE-MATH-EP(M2) #11) (12 marks)

11. (a) (i)
$$(2) \quad x = \frac{3a^2 - ab + 50a + 6b - 24}{(a+2)(a+12)}, \quad y = \frac{2(ab - 10a + 8)}{(a+2)(a+12)}, \quad z = \frac{ab - 12a + 6b - 80}{(a+2)(a+12)}$$

(ii)
$$(1)$$
 $b = 14$

(2)
$$\{(2t+2, 1-t, t): t \in \mathbf{R}\}$$

(b)
$$a = -2$$
, $b = 14$, Greatest value is 14, no real solution.

(2017-DSE-MATH-EP(M2) #05) (6 marks)

5. (a) (i)
$$h \neq 2$$

$$(ii) z = \frac{k - 14}{h - 2}$$

(b)
$$h = 2$$
, $k = 14$

$$\{(-7t - 5, 4t + 8, t) : t \in \mathbf{R}\}$$

(2018-DSE-MATH-EP(M2) #11) (12 marks)

11. (a) (i) (1)
$$a \neq 3$$
 and $a \neq -1$

(2)
$$x = \frac{a^2b + ab + 10a - 2b - 50}{(a+1)(a-3)}$$
, $y = \frac{-3ab + 22a - 5b - 38}{(a+1)(a-3)}$, $z = \frac{b-2}{2(a-3)}$

(ii)
$$(1)$$
 $b = 2$

(2)
$$\{(5m+6, -7m+4, m) : m \in \mathbf{R}\}$$

(b)
$$s = 2$$
 , $t = -8$

(2019-DSE-MATH-EP(M2) #06) (7 marks)

6. (a) (i)
$$\alpha \neq -4$$
 and $\alpha \neq -10$

(ii)
$$y = -\frac{\beta}{\alpha + 4}$$

(b)
$$\beta \neq 0$$

(2020-DSE-MATH-EP(M2) #11) (13 marks)

11. (a) (i)
$$(2)$$
 $x = \frac{h^2 + 2hk + 7h + 7k + 14}{(h+3)^2}$, $y = \frac{2h - k + 7}{(h+3)^2}$, $z = \frac{hk - h + 4k - 1}{(h+3)^2}$

(ii) (2)
$$\{(t+4, 3-t, t): t \in \mathbf{R}\}$$

(2021-DSE-MATH-EP(M2) #08) (8 marks)

8. (a)
$$\{(3-32t, 13t-1, t) : t \in \mathbf{R}\}$$